"
Home Page1 Page2 Page3 Page4 Page5 Page6 Page7 Page8 Page9 Page10 Page11 Page12 Page13 Page14 Page15 Page16 Page17 Page18 Page19 Page20 Page21 Page22 Page23 Page24 Page25 Page26 Page27 Page28 Page29 Page30 Page31 Page32 Page33 Page34 Page35 Page36 Page37 Page38 Page39 Page40 Page41 Page42 Page43 Page44 Page45 Page46 Page47 Page48 Page49 Page50 Page51 Page52 Page53 Page54 Page55 Page56 Page57 Page58 Page59 Page60 Page61 Page62 Page63 Page64 Page65 Page66 Page67 Page68 Page69 Page70 Page71 Page72 Page73 Page74 Page75 Page76 Page77 Page78 Page79 Page80 Page81 Page82 Page83 Page84 Page85 Page86 Page87 Page88 Page89 Page90 Page91 Page92 Page93 Page94 Page95 Page96 Page97 Page98 Page99 Page100 Page101 Page102 Page103 Page104 Page105 Page106 Page107 Page108 Page109 Page110 Page111 Page112 Page113 Page114 Page115 Page116 Page117 Page118 Page119 Page120 Page121 Page122 Page123 Page124 Page125 Page126 Page127 Page128 Page129 Page130 Page131

Aminoglycosides: Mechanism, Uses, and Toxicity

Introduction

Aminoglycosides are a class of antibiotics primarily used to treat serious infections caused by Gram-negative bacteria, such as Pseudomonas aeruginosa and Escherichia coli. These drugs are bactericidal and are typically reserved for life-threatening infections due to their potential toxicity.


Examples

  • Gentamicin
  • Tobramycin
  • Amikacin
  • Streptomycin
  • Neomycin
  • Kanamycin

Mechanism of Action

Aminoglycosides inhibit bacterial protein synthesis by binding to the 30S ribosomal subunit, causing misreading of the mRNA and production of faulty proteins. This disrupts the function of the bacterial cell and ultimately leads to cell death. They also disrupt the bacterial cell membrane, contributing to their bactericidal effect.


Mechanism of Resistance

  • Enzymatic Inactivation: Bacteria produce enzymes that modify and inactivate the drug.
  • Alteration of Target Site: Mutation of the 30S ribosomal subunit reduces drug binding.
  • Reduced Drug Uptake: Changes in membrane permeability or active efflux pumps decrease drug uptake.
  • Anaerobic Conditions: Lack of oxygen reduces drug uptake, making anaerobic bacteria less susceptible.

Therapeutic Uses

  • Sepsis and bacteremia
  • Respiratory tract infections (e.g., pneumonia)
  • Urinary tract infections
  • Intra-abdominal infections (e.g., peritonitis)
  • Endocarditis (usually in combination with other antibiotics)
  • Tuberculosis (e.g., streptomycin)
  • Ophthalmic infections (neomycin)

Adverse Effects

  • Ototoxicity: Hearing loss and balance issues, which may be irreversible.
  • Nephrotoxicity: Kidney damage, often reversible upon discontinuation of the drug.
  • Neuromuscular Blockade: Muscle weakness and respiratory paralysis.
  • Hypersensitivity: Rash, fever, and allergic reactions.

Contraindications

  • Pregnancy: Especially in the first trimester due to the risk of fetal harm.
  • Renal Impairment: Requires dosage adjustment to avoid nephrotoxicity.
  • Pre-existing Hearing Loss: Can worsen hearing loss or cause deafness.
  • Myasthenia Gravis: Should be avoided due to the risk of neuromuscular blockade.


© 2024 Easy Notes on Pharmacology.
Privacy Policy | Contact Us Subscribe to our RSS feed